

Graphene Malaysia 2016 8- 9th Nov 2016

Marriage of Graphene and Cellulose for Reinforced Composite Preparation

Zaiton Abdul Majid, Wan Hazman Danial and Mohd Bakri Bakar

www.utm.my

www.utm.my

Electrochemical Synthesis of Graphene

- An extremely stable graphene suspension was obtained
- Involve intercalation and exfoliation effect
- Electric current was used as the oxidizing & reducing agent

At the anode: $C_x + DS^- + H_2O \leftrightarrow (C_x^+DS^-)H_2O + e^-$ At the cathode: $H^+ + 2e^- \rightarrow H_2$ (g)

www.utm.my

TEM Images

Raman Analysis

Electrochemical synthesized graphene platelets

Commercialized graphene

SEM Images

Graphene supermarket: graphene nanopowder: grade

Graphene Nanoplatelets: ACS material products

Graphene Nanoplatelets: Knano

Moon et al., (2011)

www.utm.my

Waste material

Nanomaterial

www.utm.my

www.utm.my

W. H. Danial et. al, Carbohydrate Polymers, 118, 165 (2015)

Segal's method (Segal *et al.*, 1959)

 $Crl = (I_{22.7} - I_{18}/I_{22.7}) \times 100\%$

CNCs (Pineapple leaf): 73.6 % Cherian et al., (2010)

CNCs (mengkuang leaves): 65.9 % (Sheltami et al., (2012)

CNCs (Avicel): 81.0 % (Filson & Andoh et al., (2012)

W. H. Danial *et. al.*, *Carbohydrate Polymers*, 118, 165 (2015)

35

20 (degree)

45

55

65

15

5

25

Isolation of CNCs

TEM Images

	Source Material	Length (nm)	Diameter (nm)
Uddin <i>et al.</i> (2011)	Cotton	100 – 150	10 – 15
Angles and Dufresne, (2008)	Tunicate	500 - 1000	10
Roman & Winter (2004)	Bacterial	100 - 1000	5 - 10
Peresin <i>et al.</i> (2010)	Ramie	100 – 250	3 - 10
Rodriguez <i>et al.</i> (2006)	Sisal	100 – 500	3 – 5
Sheltami <i>et al.</i> (2012)	Mengkuang Leaves	200	10 - 20
Beck-Candanedo et al., (2005)	Wood pulps	100 – 150	4 – 5
Danial <i>et al</i> . (2015)	Wastepaper	100 - 300	3 - 10

Key factor for composite preparation

Stable and homogenous graphene dispersion in a solvent (graphene solubilization) → insurmountable challenge in graphene composite processing

"It is impossible to directly disperse hydrophobic graphite or graphene sheets in water without the assistance of surfactant or dispersing agents"

In order to achieve the solubility of graphene, the alteration of the graphene backbone is required through chemical modification (Park *et al.*, 2008, 2009), covalent (Stankovich *et al.*, 2006c; Strom *et al.*, 2010) or non-covalent (Stankovich *et al.*, 2006b; Qi *et al.*, 2010) functionalization

XPS Analysis

Graphene-Cellulose fibrillated structure

Visual molecular dynamics

The electrochemical preparation of graphene using two-electrode cell system can be achieved

The reuse of wastepaper for the extraction of cellulose material

Green approach of the production of nano-material from the waste substance

Can be scaled-up, high availability and low-cost precursor

Graphene and cellulose material both known to be interesting reinforcing material with exceptional reinforce capability for composite (e.g: polymer) preparation.

Polymer film

HRTEM Images

Small width surface of **relatively transparent** graphene layer

Graphene Quantum Dots (GQDs)

He et al., *Biosensors and Bioelectronics*, 74, 418 (2015)

Raman Analysis

Reinforcing capability in polymer composite application

Graphene-CNCs Aerogel

Acknowledgement

MOHE, **Fundamental** research Grant Scheme (FRGS) (Vot No: 4F234)

FUNDAMENTAL RESEARCH GRANT SCHEME

Universiti Teknologi Malaysia (UTM)

National Nanotechnology Directorate (NND), MOSTI

Thank You for your attention!

www.utm.my